Experience-driven Predictive Control with Robust Constraint Satisfaction under Time-Varying State Uncertainty

نویسندگان

  • Vishnu R. Desaraju
  • Alexander Spitzer
  • Nathan Michael
چکیده

We present an extension to Experience-driven Predictive Control (EPC) that leverages a Gaussian belief propagation strategy to compute an uncertainty set bounding the evolution of the system state in the presence of time-varying state uncertainty. This uncertainty set is used to tighten the constraints in the predictive control formulation via a chance constrained approach, thereby providing a probabilistic guarantee of constraint satisfaction. The parameterized form of the controllers produced by EPC coupled with online uncertainty estimates ensures this robust constraint satisfaction property persists even as the system switches controllers and experiences variations in the uncertainty model. We validate the online performance and robust constraint satisfaction of the proposed Robust EPC algorithm through a series of experimental trials with a small quadrotor platform subjected to changes in state estimate quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ROBUST $H_{infty}$ CONTROL FOR T–S TIME-VARYING DELAY SYSTEMS WITH NORM BOUNDED UNCERTAINTY BASED ON LMI APPROACH

In this paper we consider the problem of delay-dependent robustH1 control for uncertain fuzzy systems with time-varying delay. The Takagi–Sugeno (T–S) fuzzy model is used to describe such systems. Time-delay isassumed to have lower and upper bounds. Based on the Lyapunov-Krasovskiifunctional method, a sufficient condition for the existence of a robust $H_{infty}$controller is obtained. The fuzz...

متن کامل

Robust Model Predictive Control for a Class of Discrete Nonlinear systems

This paper presents a robust model predictive control scheme for a class of discrete-time nonlinear systems subject to state and input constraints. Each subsystem is composed of a nominal LTI part and an additive uncertain non-linear time-varying function which satisfies a quadratic constraint. Using the dual-mode MPC stability theory, a sufficient condition is constructed for synthesizing the ...

متن کامل

A Linear Matrix Inequality (LMI) Approach to Robust Model Predictive Control (RMPC) Design in Nonlinear Uncertain Systems Subjected to Control Input Constraint

In this paper, a robust model predictive control (MPC) algorithm is addressed for nonlinear uncertain systems in presence of the control input constraint. For achieving this goal, firstly, the additive and polytopic uncertainties are formulated in the nonlinear uncertain systems. Then, the control policy can be demonstrated as a state feedback control law in order to minimize a given cost funct...

متن کامل

Robust predictive control of switched systems: Satisfying uncertain schedules subject to state and control constraints

In this work, we consider robust predictive control of switched uncertain nonlinear systems required to satisfy a prescribed switching sequence with uncertainty in the switching times subject to state and input constraints. To illustrate our approach, we consider first the problem of satisfying a prescribed schedule subject to uncertainty only in the switching times. Predictive controllers that...

متن کامل

Robust Constraint Satisfaction: Invariant Sets and Predictive Control

Set invariance plays a fundamental role in the design of control systems for constrained systems since the constraints can be satisfied for all time if and only if the initial state is contained inside an invariant set. This thesis is concerned with robust set invariance theory and its application to guaranteeing feasibility in model predictive control. In the first part of this thesis, some of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017